
Rust and functional programming

Isaac Elliott

19 September, 2023

Rust and functional programming 1 / 1

What is Rust?

https://www.rust-lang.org/

Created at Mozilla in late 2000s and early 2010s

"Systems programming" language

Prioritises safety and performance

Built on modern (30 years or younger) programming
language research

Hello world
fn main() {

println!("Hello world!");
}

Rust and functional programming 2 / 1

Rust is commonly described as a "systems programming" language. To me
it’s a programming language for people who want to pay more attention
to machine-level details, such as memory layout, instruction counts, and
amount of branching.

It differs from C in its approach to safety. Whereas C favours simplicity and
performance at the expense of safety, Rust favours safety and performance
at the expense of simplicity. Rust is a more complex programming language
than C, and Rust compilers are harder to implement than C compilers, be-
cause the Rust language and compiler does more for the programmer.

https://www.rust-lang.org/

What is functional programming?

Programming with functions?

...with higher-order functions?

...with immutable data structures?

Writing Haskell in disguise?

Rust and functional programming 3 / 1

What is functional programming?

Is it programming with functions? With higher-order functions? With im-
mutable data structures? Does functional programming just mean, "doing
your best to embed a Haskell dialect in your language of choice"?

I’m not going to try to answer this question. I think the question of whether
it is anything in particular might be misguided. People have spent a lot of
energy debating what should and shouldn’t be considered functional pro-
gramming, and which languages should be considered "functional". Right
now I don’t see much value in an algorithm that decides what is and isn’t
"functional".

Here’s why:

What is functional programming?

Programming with functions?

...with higher-order functions?

...with immutable data structures?

Writing Haskell in disguise?

Rust and functional programming 3 / 1

What is functional programming?

Is it programming with functions? With higher-order functions? With im-
mutable data structures? Does functional programming just mean, "doing
your best to embed a Haskell dialect in your language of choice"?

I’m not going to try to answer this question. I think the question of whether
it is anything in particular might be misguided. People have spent a lot of
energy debating what should and shouldn’t be considered functional pro-
gramming, and which languages should be considered "functional". Right
now I don’t see much value in an algorithm that decides what is and isn’t
"functional".

Here’s why:

What is functional programming?

Programming with functions?

...with higher-order functions?

...with immutable data structures?

Writing Haskell in disguise?

Rust and functional programming 3 / 1

What is functional programming?

Is it programming with functions? With higher-order functions? With im-
mutable data structures? Does functional programming just mean, "doing
your best to embed a Haskell dialect in your language of choice"?

I’m not going to try to answer this question. I think the question of whether
it is anything in particular might be misguided. People have spent a lot of
energy debating what should and shouldn’t be considered functional pro-
gramming, and which languages should be considered "functional". Right
now I don’t see much value in an algorithm that decides what is and isn’t
"functional".

Here’s why:

What is functional programming?

Programming with functions?

...with higher-order functions?

...with immutable data structures?

Writing Haskell in disguise?

Rust and functional programming 3 / 1

What is functional programming?

Is it programming with functions? With higher-order functions? With im-
mutable data structures? Does functional programming just mean, "doing
your best to embed a Haskell dialect in your language of choice"?

I’m not going to try to answer this question. I think the question of whether
it is anything in particular might be misguided. People have spent a lot of
energy debating what should and shouldn’t be considered functional pro-
gramming, and which languages should be considered "functional". Right
now I don’t see much value in an algorithm that decides what is and isn’t
"functional".

Here’s why:

What is functional programming?

Programming with functions?

...with higher-order functions?

...with immutable data structures?

Writing Haskell in disguise?

Rust and functional programming 3 / 1

What is functional programming?

Is it programming with functions? With higher-order functions? With im-
mutable data structures? Does functional programming just mean, "doing
your best to embed a Haskell dialect in your language of choice"?

I’m not going to try to answer this question. I think the question of whether
it is anything in particular might be misguided. People have spent a lot of
energy debating what should and shouldn’t be considered functional pro-
gramming, and which languages should be considered "functional". Right
now I don’t see much value in an algorithm that decides what is and isn’t
"functional".

Here’s why:

Personal identity and functional programming

Rust and functional programming 4 / 1

Before I get into the technical details, I want to talk about a use (misuse?)
of the term "functional programming": as a sort of "tribal identity marker".
Here’s something true of my experience that might also be true for you:

I enjoy spending time with people who have similar interests to me. I like
talking about programming with other programmers (that’s why I’m here
tonight!), and listening to music with people who have similar tastes. In
situations like these, in a community of sorts, I feel a kind of satisfaction
that I don’t feel when I’m alone or with people who are extremely different
to me.

I’ve noticed that if I don’t pay enough attention, I have a tendency to act
as if my interests / tastes/ preferences are somehow objectively better than
the alternatives.

Personal identity and functional programming

Rust and functional programming 4 / 1

I’ve also experienced something kind of toxic that happens when this (usu-
ally incorrect) tendency to think that my choice is Better spreads to the
group and becomes part of the way we bond. We start to celebrate the
supposed fact that we are the small group who made the "right" choice, and
start to find meaning in pointing out the ways that everyone else is "wrong".

This is kind of how I related to "functional programming" when I was
younger. I enjoyed a particular style of programming or flavour of program-
ming language, and thought I was being attracted to some kind of objective
superiority. Sometimes I even had a feeling of ethical superiority. Under
those perspectives, at the worst of times, the question of "is X functional
programming?" could be less like asking, "in which section of the library do
we put the book on X?" and more like, "do I approve of X or is it yucky /
weird / other?"

I failed to see the ways in which my attraction to "functional programming"
was due to my personal history and my taste in writing software. And I
failed to acknowledge the nebulousity of this "paradigm" which at the time
seemed so objective.

Common functional programming concepts

Algebraic datatypes and higher-order functions

Immutability

Static types

Equational reasoning

Rust and functional programming 5 / 1

So as an effort of humility, instead of presenting a definition of functional
programming and measuring Rust against it, I’m going cover a few topics
that seem most closely associated to "functional programming" (whatever
that is), and talk about the extent to which they show up in Rust.

Before I reveal them, I want to do a survey. What are some of the ideas you
would include?

Common functional programming concepts

Algebraic datatypes and higher-order functions

Immutability

Static types

Equational reasoning

Rust and functional programming 5 / 1

So as an effort of humility, instead of presenting a definition of functional
programming and measuring Rust against it, I’m going cover a few topics
that seem most closely associated to "functional programming" (whatever
that is), and talk about the extent to which they show up in Rust.

Before I reveal them, I want to do a survey. What are some of the ideas you
would include?

Common functional programming concepts

Algebraic datatypes and higher-order functions

Immutability

Static types

Equational reasoning

Rust and functional programming 5 / 1

So as an effort of humility, instead of presenting a definition of functional
programming and measuring Rust against it, I’m going cover a few topics
that seem most closely associated to "functional programming" (whatever
that is), and talk about the extent to which they show up in Rust.

Before I reveal them, I want to do a survey. What are some of the ideas you
would include?

Common functional programming concepts

Algebraic datatypes and higher-order functions

Immutability

Static types

Equational reasoning

Rust and functional programming 5 / 1

So as an effort of humility, instead of presenting a definition of functional
programming and measuring Rust against it, I’m going cover a few topics
that seem most closely associated to "functional programming" (whatever
that is), and talk about the extent to which they show up in Rust.

Before I reveal them, I want to do a survey. What are some of the ideas you
would include?

Common functional programming concepts

Algebraic datatypes and higher-order functions

Immutability

Static types

Equational reasoning

Rust and functional programming 5 / 1

So as an effort of humility, instead of presenting a definition of functional
programming and measuring Rust against it, I’m going cover a few topics
that seem most closely associated to "functional programming" (whatever
that is), and talk about the extent to which they show up in Rust.

Before I reveal them, I want to do a survey. What are some of the ideas you
would include?

Algebraic datatypes and higher-order functions

Rust and functional programming 6 / 1

Algebraic datatypes and higher-order functions — ADTs

Definition
enum Sum<A, B>{

Left(A),
Right(B)

}

struct Product<A, B>{
first: A,
second: B

}

Creation
let x = Sum::Left(1);
let y = Sum::Right(true);

let z = Product{
first: "x",
second: "y"

};

Use

let x: Sum<A, B> = ...;
let y = match x {

Sum::Left(a) => ...,
Sum::Right(b) => ...

};

let x: Product<A, B> = ...;
let y = x.first;
let z = y.second;

Rust and functional programming 7 / 1

Rust has sums, which it calls "enums", and products, which it calls "structs".

Enums are examined by pattern matching, and structs by field accessors.

Algebraic datatypes and higher-order functions — ADTs

Definition
enum Sum<A, B>{

Left(A),
Right(B)

}

struct Product<A, B>{
first: A,
second: B

}

Creation
let x = Sum::Left(1);
let y = Sum::Right(true);

let z = Product{
first: "x",
second: "y"

};

Use

let x: Sum<A, B> = ...;
let y = match x {

Sum::Left(a) => ...,
Sum::Right(b) => ...

};

let x: Product<A, B> = ...;
let y = x.first;
let z = y.second;

Rust and functional programming 7 / 1

Rust has sums, which it calls "enums", and products, which it calls "structs".

Enums are examined by pattern matching, and structs by field accessors.

Algebraic datatypes and higher-order functions — ADTs

Definition
enum Sum<A, B>{

Left(A),
Right(B)

}

struct Product<A, B>{
first: A,
second: B

}

Creation
let x = Sum::Left(1);
let y = Sum::Right(true);

let z = Product{
first: "x",
second: "y"

};

Use

let x: Sum<A, B> = ...;
let y = match x {

Sum::Left(a) => ...,
Sum::Right(b) => ...

};

let x: Product<A, B> = ...;
let y = x.first;
let z = y.second;

Rust and functional programming 7 / 1

Rust has sums, which it calls "enums", and products, which it calls "structs".

Enums are examined by pattern matching, and structs by field accessors.

Algebraic datatypes and higher-order functions — ADTs

Extremely easy to define, create, and use
Has a number of shorthands that make ADTs even more enjoyable to
work with

▶ Named enum fields
enum Sum<A, B>{

Left{left_arg: A},
Right{right_arg: B}

}
▶ Named field punning

let first = ..; let second = ..;
let z = Pair{first, second};

▶ Disjunctive patterns / "or-patterns"
match x {

0 => ..,
1 | 2 | 3 => ..,
4 => ..,
_ => ..

}

Rust and functional programming 8 / 1

Algebraic datatypes and higher-order functions — ADTs

Extremely easy to define, create, and use
Has a number of shorthands that make ADTs even more enjoyable to
work with

▶ Named enum fields
enum Sum<A, B>{

Left{left_arg: A},
Right{right_arg: B}

}

▶ Named field punning
let first = ..; let second = ..;
let z = Pair{first, second};

▶ Disjunctive patterns / "or-patterns"
match x {

0 => ..,
1 | 2 | 3 => ..,
4 => ..,
_ => ..

}

Rust and functional programming 8 / 1

Algebraic datatypes and higher-order functions — ADTs

Extremely easy to define, create, and use
Has a number of shorthands that make ADTs even more enjoyable to
work with

▶ Named enum fields
enum Sum<A, B>{

Left{left_arg: A},
Right{right_arg: B}

}
▶ Named field punning

let first = ..; let second = ..;
let z = Pair{first, second};

▶ Disjunctive patterns / "or-patterns"
match x {

0 => ..,
1 | 2 | 3 => ..,
4 => ..,
_ => ..

}

Rust and functional programming 8 / 1

Algebraic datatypes and higher-order functions — ADTs

Extremely easy to define, create, and use
Has a number of shorthands that make ADTs even more enjoyable to
work with

▶ Named enum fields
enum Sum<A, B>{

Left{left_arg: A},
Right{right_arg: B}

}
▶ Named field punning

let first = ..; let second = ..;
let z = Pair{first, second};

▶ Disjunctive patterns / "or-patterns"
match x {

0 => ..,
1 | 2 | 3 => ..,
4 => ..,
_ => ..

}
Rust and functional programming 8 / 1

Algebraic datatypes and higher-order functions — HOFs

Rust has anonymous functions, known as closures.

Creation
let f = |x| x + 1;

Use
let y = f(x);

Higher-order functions are fairly common in the standard library.

Example: map
let xs: Vec<u32> = vec![1, 2, 3, 4];
let ys: Vec<u32> = xs.iter().map(|x| x + 1).collect();

Rust and functional programming 9 / 1

https://doc.rust-lang.org/std/iter/struct.Map.html

Algebraic datatypes and higher-order functions — HOFs

Rust has anonymous functions, known as closures.

Creation
let f = |x| x + 1;

Use
let y = f(x);

Higher-order functions are fairly common in the standard library.

Example: map
let xs: Vec<u32> = vec![1, 2, 3, 4];
let ys: Vec<u32> = xs.iter().map(|x| x + 1).collect();

Rust and functional programming 9 / 1

https://doc.rust-lang.org/std/iter/struct.Map.html

Algebraic datatypes and higher-order functions — HOFs

Working with closures / HOFs in Rust is more complex than in other
languages.

Haskell
map :: (a -> b) -> Maybe a -> Maybe b
maybe :: b -> (a -> b) -> Maybe a -> b

Rust
fn map<A, B, F: FnOnce(A) -> B>(

f: F,
value: Option<A>

) -> Option

fn map_or<A, B, F: FnOnce(A) -> B>(
default: B,
f: F,
value: Option<A>

) -> B

Rust and functional programming 10 / 1

Algebraic datatypes and higher-order functions — HOFs

Most languages have a single function type.

Rust has 3 kinds of closure:

FnOnce

Fn

FnMut

Rust and functional programming 11 / 1

Most languages have a single function type. Rust has more. There are 3
kinds of closure: FnOnce, Fn, and FnMut. I won’t explain what they mean
right now. Let me just say: they are all justified in the context of Rust’s goals
of safety and performance. The price of achieving these goals for closures
in Rust is simplicity: when you write a higher-order function, you need to
figure out which kind of higher-order function is most appropriate.

https://doc.rust-lang.org/std/ops/trait.FnOnce.html
https://doc.rust-lang.org/std/ops/trait.Fn.html
https://doc.rust-lang.org/std/ops/trait.FnMut.html

Algebraic datatypes and higher-order functions

Higher-order functions (in some form or another) seem like an essential
component of "functional programming".

Algebraic datatypes and higher-order functions are interdefinable:

ADTs via HOFs — Church encoding

HOFs via ADTs — Defunctionalization

Rust and functional programming 12 / 1

It seems reasonable to me to claim that higher-order functions are an es-
sential part of functional programming.

I’ve put algebraic datatypes and higher-order functions in the same section
because they’re actually interdefinable. If you have one, then you have the
other (assuming you have first-order function definitions).

Using higher-order functions to define algebraic datatypes is called Church
encoding.

Going the other way, algebraic datatypes (together with first-order func-
tions) to can be used to define higher-order functions through a method
called Defunctionalisation, which was the subject of Jack’s recent talk, "Ev-
erything looks like a function".

https://en.wikipedia.org/wiki/Church_encoding
https://en.wikipedia.org/wiki/Defunctionalization

Algebraic datatypes and higher-order functions

Higher-order functions (in some form or another) seem like an essential
component of "functional programming".

Algebraic datatypes and higher-order functions are interdefinable:

ADTs via HOFs — Church encoding

HOFs via ADTs — Defunctionalization

Rust and functional programming 12 / 1

It seems reasonable to me to claim that higher-order functions are an es-
sential part of functional programming.

I’ve put algebraic datatypes and higher-order functions in the same section
because they’re actually interdefinable. If you have one, then you have the
other (assuming you have first-order function definitions).

Using higher-order functions to define algebraic datatypes is called Church
encoding.

Going the other way, algebraic datatypes (together with first-order func-
tions) to can be used to define higher-order functions through a method
called Defunctionalisation, which was the subject of Jack’s recent talk, "Ev-
erything looks like a function".

https://en.wikipedia.org/wiki/Church_encoding
https://en.wikipedia.org/wiki/Defunctionalization

Algebraic datatypes and higher-order functions

Higher-order functions (in some form or another) seem like an essential
component of "functional programming".

Algebraic datatypes and higher-order functions are interdefinable:

ADTs via HOFs — Church encoding

HOFs via ADTs — Defunctionalization

Rust and functional programming 12 / 1

It seems reasonable to me to claim that higher-order functions are an es-
sential part of functional programming.

I’ve put algebraic datatypes and higher-order functions in the same section
because they’re actually interdefinable. If you have one, then you have the
other (assuming you have first-order function definitions).

Using higher-order functions to define algebraic datatypes is called Church
encoding.

Going the other way, algebraic datatypes (together with first-order func-
tions) to can be used to define higher-order functions through a method
called Defunctionalisation, which was the subject of Jack’s recent talk, "Ev-
erything looks like a function".

https://en.wikipedia.org/wiki/Church_encoding
https://en.wikipedia.org/wiki/Defunctionalization

Algebraic datatypes and higher-order functions

Higher-order functions (in some form or another) seem like an essential
component of "functional programming".

Algebraic datatypes and higher-order functions are interdefinable:

ADTs via HOFs — Church encoding

HOFs via ADTs — Defunctionalization

Rust and functional programming 12 / 1

It seems reasonable to me to claim that higher-order functions are an es-
sential part of functional programming.

I’ve put algebraic datatypes and higher-order functions in the same section
because they’re actually interdefinable. If you have one, then you have the
other (assuming you have first-order function definitions).

Using higher-order functions to define algebraic datatypes is called Church
encoding.

Going the other way, algebraic datatypes (together with first-order func-
tions) to can be used to define higher-order functions through a method
called Defunctionalisation, which was the subject of Jack’s recent talk, "Ev-
erything looks like a function".

https://en.wikipedia.org/wiki/Church_encoding
https://en.wikipedia.org/wiki/Defunctionalization

Immutability

Rust and functional programming 13 / 1

Immutability

Variable bindings in Rust are immutable by default:

Immutable by default
let x = 1;
x = x + 1; // error: cannot assign twice to immutable variable `x`

Rust allows mutability, which comes in 3 flavours:

Local mutability — mild

Mutable references — medium

Interior (hidden) mutability — spicy

Rust and functional programming 14 / 1

Immutability

Variable bindings in Rust are immutable by default:

Immutable by default
let x = 1;
x = x + 1; // error: cannot assign twice to immutable variable `x`

Rust allows mutability, which comes in 3 flavours:

Local mutability — mild

Mutable references — medium

Interior (hidden) mutability — spicy

Rust and functional programming 14 / 1

Immutability

Variable bindings in Rust are immutable by default:

Immutable by default
let x = 1;
x = x + 1; // error: cannot assign twice to immutable variable `x`

Rust allows mutability, which comes in 3 flavours:

Local mutability — mild

Mutable references — medium

Interior (hidden) mutability — spicy

Rust and functional programming 14 / 1

Immutability

Variable bindings in Rust are immutable by default:

Immutable by default
let x = 1;
x = x + 1; // error: cannot assign twice to immutable variable `x`

Rust allows mutability, which comes in 3 flavours:

Local mutability — mild

Mutable references — medium

Interior (hidden) mutability — spicy

Rust and functional programming 14 / 1

Immutability

Variable bindings in Rust are immutable by default:

Immutable by default
let x = 1;
x = x + 1; // error: cannot assign twice to immutable variable `x`

Rust allows mutability, which comes in 3 flavours:

Local mutability — mild

Mutable references — medium

Interior (hidden) mutability — spicy

Rust and functional programming 14 / 1

ImMutability — Local

Local mutability
fn two() -> u32 {

let mut x: u32 = 0;
x += 1;
x += 1;
x

}

Rust and functional programming 15 / 1

This is the most benign form of mutability because it is compositional.
When I call a function, that function’s use of local mutability is not a con-
cern to me.

ImMutability — References

Definition
fn increment_immutable(x: &u32) {

*x = x + 1; // error: cannot assign to `*x`, which is
// behind a `&` reference

}

fn increment_mutable(x: &mut u32) {
*x = x + 1; // ok

}

Rust and functional programming 16 / 1

I’ve lost some compositionality: if I’m not careful with my design then I
could create a history-sensitive function. A function that only works prop-
erly when I call it in the right place at the right time.

The upside is that because the mutability is in the type signature I’m re-
minded of this possibility, so I can more consciously opting in to (potential)
mutation when I call such functions.

ImMutability — References

Use
fn increment_mutable(x: &mut u32) {

*x = x + 1;
}

let x = 1;
increment_mutable(&x) // error: types differ in mutability

let x = 1;
increment_mutable(&mut x) // error: cannot borrow `x` as mutable,

// as it is not declared as mutable
let mut x = 1;
increment_mutable(&mut x) // ok

Rust and functional programming 17 / 1

You can only take a mutable reference to a mutable variable. I find adding
the mut keyword to a binding to be a helpful "confirmation" step for mindful
mutability.

ImMutability — Interior (hidden)

Some types allow mutation through an "immutable" reference:

Cell

RefCell

Mutex

RwLock

atomics

Type Better Name Multiplicity Writable (*x = ..)
&T Shared reference Many No
&mut T Exclusive reference One Yes

Rust and functional programming 18 / 1

Some types allow mutation through an "immutable" reference. That’s a hint
that the term "immutable reference" is a bit of a misnomer. Instead of talking
about "immutable" and "mutable" references, sometimes it’s better to use
the terms "shared" and "exclusive", respectively.

Rust prevents data races by only allowing writes via an exclusive reference.

https://doc.rust-lang.org/std/cell/struct.Cell.html
https://doc.rust-lang.org/std/cell/struct.RefCell.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.RwLock.html
https://doc.rust-lang.org/std/sync/atomic/

ImMutability — Interior (hidden)

Some types allow mutation through an "immutable" reference:

Cell

RefCell

Mutex

RwLock

atomics

Type Better Name Multiplicity Writable (*x = ..)

&T Shared reference Many No
&mut T Exclusive reference One Yes

Rust and functional programming 18 / 1

Some types allow mutation through an "immutable" reference. That’s a hint
that the term "immutable reference" is a bit of a misnomer. Instead of talking
about "immutable" and "mutable" references, sometimes it’s better to use
the terms "shared" and "exclusive", respectively.

Rust prevents data races by only allowing writes via an exclusive reference.

https://doc.rust-lang.org/std/cell/struct.Cell.html
https://doc.rust-lang.org/std/cell/struct.RefCell.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.RwLock.html
https://doc.rust-lang.org/std/sync/atomic/

ImMutability — Interior (hidden)

Some types allow mutation through an "immutable" reference:

Cell

RefCell

Mutex

RwLock

atomics

Type Better Name Multiplicity Writable (*x = ..)
&T Shared reference Many No

&mut T Exclusive reference One Yes

Rust and functional programming 18 / 1

Some types allow mutation through an "immutable" reference. That’s a hint
that the term "immutable reference" is a bit of a misnomer. Instead of talking
about "immutable" and "mutable" references, sometimes it’s better to use
the terms "shared" and "exclusive", respectively.

Rust prevents data races by only allowing writes via an exclusive reference.

https://doc.rust-lang.org/std/cell/struct.Cell.html
https://doc.rust-lang.org/std/cell/struct.RefCell.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.RwLock.html
https://doc.rust-lang.org/std/sync/atomic/

ImMutability — Interior (hidden)

Some types allow mutation through an "immutable" reference:

Cell

RefCell

Mutex

RwLock

atomics

Type Better Name Multiplicity Writable (*x = ..)
&T Shared reference Many No
&mut T Exclusive reference One Yes

Rust and functional programming 18 / 1

Some types allow mutation through an "immutable" reference. That’s a hint
that the term "immutable reference" is a bit of a misnomer. Instead of talking
about "immutable" and "mutable" references, sometimes it’s better to use
the terms "shared" and "exclusive", respectively.

Rust prevents data races by only allowing writes via an exclusive reference.

https://doc.rust-lang.org/std/cell/struct.Cell.html
https://doc.rust-lang.org/std/cell/struct.RefCell.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.RwLock.html
https://doc.rust-lang.org/std/sync/atomic/

ImMutability — Interior (hidden)

Definition
fn increment_interior(x: &Cell<u64>) -> u64 {

let result = x.get() + x.get();
x.set(x.get(x) + 1);
result

}

Mutability is no longer in the type signature.

Example
struct S{

x: Cell<u64>
}

// Does `f_S` mutate its argument?
fn f_S(s: &S) -> { .. }

Rust and functional programming 19 / 1

When is interior mutability useful?

It’s necessary for thread-shared mutable state, and that’s the only time I’ve
used it. I’ve never used ‘Cell‘ or ‘RefCell‘ and I haven’t thought about when
they’d be justified.

Static types

Rust and functional programming 20 / 1

Static types — common features

Algebraic datatypes — structs and enums
struct TypeName{

field_1: FieldType1,
field_2: FieldType2,
...

}

enum TypeName{
Constructor1(FieldType11, FieldType12, ...),
Constructor2,
...,

}

Rust and functional programming 21 / 1

Static types — common features

Parametric polymorphism — generics
struct TypeName<Param1, Param2>{ ... }
enum TypeName<Param1, Param2>{ ... }

fn id<A>(x: A) -> A { x }

Rust and functional programming 22 / 1

Static types — common features

Ad-hoc polymorphism — traits
trait Monoid {

fn empty() -> Self;
fn combine(self, other: Self) -> Self

}

fn fold<M: Monoid>(xs: Vec<M>) -> M { .. }

Rust and functional programming 23 / 1

Static types — uncommon features

Mutability tracking — &T vs. &mut T

Reference lifetime analysis (borrow checking)

Uniqueness types

Rust and functional programming 24 / 1

Static types — reference lifetime analysis

Every reference points to valid memory.

Rust
struct IntAndBool{
first: i32,
second: bool

}

fn first<'a>(input: &'a IntAndBool) -> &'a i32 {
&input.first

}

fn bad<'a>() -> &'a i32 {
let x = IntAndBool{first: 99, second: true};
let y = first(&x);
y

// ^ error: returns a value referencing data
// owned by the current function
}

C
typedef struct {

long first;
bool second;

} IntAndBool;

long* first(IntAndBool* input) {
return &input->first;

}

long* bad() {
IntAndBool x = { .first = 99, .second = true };
long* y = first(&x);
return y; // ok...?

}

Rust and functional programming 25 / 1

Reference lifetime analysis, generally known as "borrow checking", deter-
mines at compile time whether a program references data in a safe way.

For example, you’re allowed to get a refrence to a struct’s field, pass it to
and return it from functions, store it in another datatype, etc. and the com-
piler will prevent you from doing anything that could cause the reference to
outlive the struct. In other words, no dangling references / use-after-frees.

Static types — uniqueness types

&T — shared

Concurrent use
fn f(x: &T, y: &T) { .. }

..

let x: T = ..;
f(&x, &x); // ok

Sequential use
fn g(x: &T) { .. }
fn h(x: &T) { .. }

..

let x: T = ..;
f(&x);
g(&x); // ok

Rust and functional programming 26 / 1

Static types — uniqueness types

&T — shared

Concurrent use
fn f(x: &T, y: &T) { .. }

..

let x: T = ..;
f(&x, &x); // ok

Sequential use
fn g(x: &T) { .. }
fn h(x: &T) { .. }

..

let x: T = ..;
f(&x);
g(&x); // ok

Rust and functional programming 26 / 1

Static types — uniqueness types

&T — shared

Concurrent use
fn f(x: &T, y: &T) { .. }

..

let x: T = ..;
f(&x, &x); // ok

Sequential use
fn g(x: &T) { .. }
fn h(x: &T) { .. }

..

let x: T = ..;
f(&x);
g(&x); // ok

Rust and functional programming 26 / 1

Static types — uniqueness types

&mut T — exclusive

Concurrent use
fn f(x: &mut T, y: &mut T) { .. }

..

let mut x: T = ..;
// error: cannot borrow `x` as
// mutable more than once at
// a time
f(&mut x, &mut x);
// ^^^^^^ second mutable
// borrow occurs here

Sequential use
fn g(x: &mut T) { .. }
fn h(x: &mut T) { .. }

..

let mut x: T = ..;
f(&mut x);
g(&mut x); // ok

Rust and functional programming 27 / 1

Static types — uniqueness types

&mut T — exclusive

Concurrent use
fn f(x: &mut T, y: &mut T) { .. }

..

let mut x: T = ..;
// error: cannot borrow `x` as
// mutable more than once at
// a time
f(&mut x, &mut x);
// ^^^^^^ second mutable
// borrow occurs here

Sequential use
fn g(x: &mut T) { .. }
fn h(x: &mut T) { .. }

..

let mut x: T = ..;
f(&mut x);
g(&mut x); // ok

Rust and functional programming 27 / 1

Static types — uniqueness types

&mut T — exclusive

Concurrent use
fn f(x: &mut T, y: &mut T) { .. }

..

let mut x: T = ..;
// error: cannot borrow `x` as
// mutable more than once at
// a time
f(&mut x, &mut x);
// ^^^^^^ second mutable
// borrow occurs here

Sequential use
fn g(x: &mut T) { .. }
fn h(x: &mut T) { .. }

..

let mut x: T = ..;
f(&mut x);
g(&mut x); // ok

Rust and functional programming 27 / 1

Static types — uniqueness types

T — unique

Concurrent use
fn f(x: T, y: T) { .. }

..

let x: T = ..;
// error: use of moved value `x`
f(x, x);
// ^ value used here after move

Sequential use
fn g(x: T) { .. }
fn h(x: T) { .. }

..

let x: T = ..;
f(x);
// error: use of moved value `x`
g(x);
//^ value used here after move

Rust and functional programming 28 / 1

You can think of a variable with of a unique type as being a "resource" that
can be consumed by a function. After the resource has been consumed, it is
no longer available for use. Rust calls this "transferring ownership".
Following the "ownership" metaphor, taking a reference is called "borrow-
ing". (Because ownership is returned once the reference is deleted)
I find unique types extremely interesting because of how they interact with
equational reasoning and mutability, which I will cover later.

Static types — uniqueness types

T — unique

Concurrent use
fn f(x: T, y: T) { .. }

..

let x: T = ..;
// error: use of moved value `x`
f(x, x);
// ^ value used here after move

Sequential use
fn g(x: T) { .. }
fn h(x: T) { .. }

..

let x: T = ..;
f(x);
// error: use of moved value `x`
g(x);
//^ value used here after move

Rust and functional programming 28 / 1

You can think of a variable with of a unique type as being a "resource" that
can be consumed by a function. After the resource has been consumed, it is
no longer available for use. Rust calls this "transferring ownership".
Following the "ownership" metaphor, taking a reference is called "borrow-
ing". (Because ownership is returned once the reference is deleted)
I find unique types extremely interesting because of how they interact with
equational reasoning and mutability, which I will cover later.

Static types and functional programming

Come to Donovan’s talk next month!

Curry-Howard correspondence: types are propositions and (lambda
calculus) programs are proofs

Only holds in general when a type system is decidable
Rust’s type system is (technically) undecidable

▶ https://sdleffler.github.io/RustTypeSystemTuringComplete/
▶ https://github.com/Ashymad/fortraith

But you probably don’t need to worry about that ;)

Rust and functional programming 29 / 1

There’s a deep theoretical reason that types are associated with functional
programming. The lambda calculus is a turing-complete model of computa-
tion which consists *only* of functions. The definitive functional program-
ming language. There are ways of defining type systems for the lambda
calculus that are equivalent to mathematical logics. In this setting, a type
is equivalent to a proposition, and a well-typed lambda calculus program is
a proof of that proposition. This is known as the Curry-Howard correspon-
dence and I think Donovan will be covering it in more detail next month.

Given this, some people might suggest that a functional programming lan-
guage is one that corresponds to a logic via Curry-Howard.

The validity of "types as propositions and proofs as programs" for a pro-
gramming language requires type checking of that language to be decid-
able.

Rust’s type checker is known to be undecidable. It’s possible to write Rust
programs that would take an infinite amount of time to type check. I think
it’s nearly impossible in a typical software engineering context.

https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
https://sdleffler.github.io/RustTypeSystemTuringComplete/
https://github.com/Ashymad/fortraith

Static types and functional programming

Come to Donovan’s talk next month!

Curry-Howard correspondence: types are propositions and (lambda
calculus) programs are proofs

Only holds in general when a type system is decidable
Rust’s type system is (technically) undecidable

▶ https://sdleffler.github.io/RustTypeSystemTuringComplete/
▶ https://github.com/Ashymad/fortraith

But you probably don’t need to worry about that ;)

Rust and functional programming 29 / 1

There’s a deep theoretical reason that types are associated with functional
programming. The lambda calculus is a turing-complete model of computa-
tion which consists *only* of functions. The definitive functional program-
ming language. There are ways of defining type systems for the lambda
calculus that are equivalent to mathematical logics. In this setting, a type
is equivalent to a proposition, and a well-typed lambda calculus program is
a proof of that proposition. This is known as the Curry-Howard correspon-
dence and I think Donovan will be covering it in more detail next month.

Given this, some people might suggest that a functional programming lan-
guage is one that corresponds to a logic via Curry-Howard.

The validity of "types as propositions and proofs as programs" for a pro-
gramming language requires type checking of that language to be decid-
able.

Rust’s type checker is known to be undecidable. It’s possible to write Rust
programs that would take an infinite amount of time to type check. I think
it’s nearly impossible in a typical software engineering context.

https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
https://sdleffler.github.io/RustTypeSystemTuringComplete/
https://github.com/Ashymad/fortraith

Static types and functional programming

Come to Donovan’s talk next month!

Curry-Howard correspondence: types are propositions and (lambda
calculus) programs are proofs

Only holds in general when a type system is decidable
Rust’s type system is (technically) undecidable

▶ https://sdleffler.github.io/RustTypeSystemTuringComplete/
▶ https://github.com/Ashymad/fortraith

But you probably don’t need to worry about that ;)

Rust and functional programming 29 / 1

There’s a deep theoretical reason that types are associated with functional
programming. The lambda calculus is a turing-complete model of computa-
tion which consists *only* of functions. The definitive functional program-
ming language. There are ways of defining type systems for the lambda
calculus that are equivalent to mathematical logics. In this setting, a type
is equivalent to a proposition, and a well-typed lambda calculus program is
a proof of that proposition. This is known as the Curry-Howard correspon-
dence and I think Donovan will be covering it in more detail next month.

Given this, some people might suggest that a functional programming lan-
guage is one that corresponds to a logic via Curry-Howard.

The validity of "types as propositions and proofs as programs" for a pro-
gramming language requires type checking of that language to be decid-
able.

Rust’s type checker is known to be undecidable. It’s possible to write Rust
programs that would take an infinite amount of time to type check. I think
it’s nearly impossible in a typical software engineering context.

https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
https://sdleffler.github.io/RustTypeSystemTuringComplete/
https://github.com/Ashymad/fortraith

Static types and functional programming

Come to Donovan’s talk next month!

Curry-Howard correspondence: types are propositions and (lambda
calculus) programs are proofs

Only holds in general when a type system is decidable

Rust’s type system is (technically) undecidable
▶ https://sdleffler.github.io/RustTypeSystemTuringComplete/
▶ https://github.com/Ashymad/fortraith

But you probably don’t need to worry about that ;)

Rust and functional programming 29 / 1

There’s a deep theoretical reason that types are associated with functional
programming. The lambda calculus is a turing-complete model of computa-
tion which consists *only* of functions. The definitive functional program-
ming language. There are ways of defining type systems for the lambda
calculus that are equivalent to mathematical logics. In this setting, a type
is equivalent to a proposition, and a well-typed lambda calculus program is
a proof of that proposition. This is known as the Curry-Howard correspon-
dence and I think Donovan will be covering it in more detail next month.

Given this, some people might suggest that a functional programming lan-
guage is one that corresponds to a logic via Curry-Howard.

The validity of "types as propositions and proofs as programs" for a pro-
gramming language requires type checking of that language to be decid-
able.

Rust’s type checker is known to be undecidable. It’s possible to write Rust
programs that would take an infinite amount of time to type check. I think
it’s nearly impossible in a typical software engineering context.

https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
https://sdleffler.github.io/RustTypeSystemTuringComplete/
https://github.com/Ashymad/fortraith

Static types and functional programming

Come to Donovan’s talk next month!

Curry-Howard correspondence: types are propositions and (lambda
calculus) programs are proofs

Only holds in general when a type system is decidable
Rust’s type system is (technically) undecidable

▶ https://sdleffler.github.io/RustTypeSystemTuringComplete/
▶ https://github.com/Ashymad/fortraith

But you probably don’t need to worry about that ;)

Rust and functional programming 29 / 1

There’s a deep theoretical reason that types are associated with functional
programming. The lambda calculus is a turing-complete model of computa-
tion which consists *only* of functions. The definitive functional program-
ming language. There are ways of defining type systems for the lambda
calculus that are equivalent to mathematical logics. In this setting, a type
is equivalent to a proposition, and a well-typed lambda calculus program is
a proof of that proposition. This is known as the Curry-Howard correspon-
dence and I think Donovan will be covering it in more detail next month.

Given this, some people might suggest that a functional programming lan-
guage is one that corresponds to a logic via Curry-Howard.

The validity of "types as propositions and proofs as programs" for a pro-
gramming language requires type checking of that language to be decid-
able.

Rust’s type checker is known to be undecidable. It’s possible to write Rust
programs that would take an infinite amount of time to type check. I think
it’s nearly impossible in a typical software engineering context.

https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
https://sdleffler.github.io/RustTypeSystemTuringComplete/
https://github.com/Ashymad/fortraith

Static types and functional programming

Come to Donovan’s talk next month!

Curry-Howard correspondence: types are propositions and (lambda
calculus) programs are proofs

Only holds in general when a type system is decidable
Rust’s type system is (technically) undecidable

▶ https://sdleffler.github.io/RustTypeSystemTuringComplete/
▶ https://github.com/Ashymad/fortraith

But you probably don’t need to worry about that ;)

Rust and functional programming 29 / 1

There’s a deep theoretical reason that types are associated with functional
programming. The lambda calculus is a turing-complete model of computa-
tion which consists *only* of functions. The definitive functional program-
ming language. There are ways of defining type systems for the lambda
calculus that are equivalent to mathematical logics. In this setting, a type
is equivalent to a proposition, and a well-typed lambda calculus program is
a proof of that proposition. This is known as the Curry-Howard correspon-
dence and I think Donovan will be covering it in more detail next month.

Given this, some people might suggest that a functional programming lan-
guage is one that corresponds to a logic via Curry-Howard.

The validity of "types as propositions and proofs as programs" for a pro-
gramming language requires type checking of that language to be decid-
able.

Rust’s type checker is known to be undecidable. It’s possible to write Rust
programs that would take an infinite amount of time to type check. I think
it’s nearly impossible in a typical software engineering context.

https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
https://sdleffler.github.io/RustTypeSystemTuringComplete/
https://github.com/Ashymad/fortraith

Equational reasoning

Rust and functional programming 30 / 1

Equational reasoning

Reasoning about / manipulating programs as if they are a set of equations.

Factor out
(y + 1) * (y + 1)

⇝

let x = y + 1;
x * x

Inline
let x = y + 1;
x * x

⇝

(y + 1) * (y + 1)

Simplify
let y = x * 0 + 2

⇝ { ∀x. x ∗ 0 = 0 }
let y = 2

Rust and functional programming 31 / 1

You use equational reasoning whenever you factor out an expression or
function, and when you go the other way by inlining.

Equational reasoning also comes up whenever you simpilify or optimise
code. Optimisations are equations between programs where one side of
the equation has a lower "cost" than the other side.
It’s a really important concept!

Equational reasoning

Reasoning about / manipulating programs as if they are a set of equations.

Factor out
(y + 1) * (y + 1)

⇝

let x = y + 1;
x * x

Inline
let x = y + 1;
x * x

⇝

(y + 1) * (y + 1)

Simplify
let y = x * 0 + 2

⇝ { ∀x. x ∗ 0 = 0 }
let y = 2

Rust and functional programming 31 / 1

You use equational reasoning whenever you factor out an expression or
function, and when you go the other way by inlining.

Equational reasoning also comes up whenever you simpilify or optimise
code. Optimisations are equations between programs where one side of
the equation has a lower "cost" than the other side.
It’s a really important concept!

Equational reasoning

Reasoning about / manipulating programs as if they are a set of equations.

Factor out
(y + 1) * (y + 1)

⇝

let x = y + 1;
x * x

Inline
let x = y + 1;
x * x

⇝

(y + 1) * (y + 1)

Simplify
let y = x * 0 + 2

⇝ { ∀x. x ∗ 0 = 0 }
let y = 2

Rust and functional programming 31 / 1

You use equational reasoning whenever you factor out an expression or
function, and when you go the other way by inlining.

Equational reasoning also comes up whenever you simpilify or optimise
code. Optimisations are equations between programs where one side of
the equation has a lower "cost" than the other side.
It’s a really important concept!

Equational reasoning

Reasoning about / manipulating programs as if they are a set of equations.

Factor out
(y + 1) * (y + 1)

⇝

let x = y + 1;
x * x

Inline
let x = y + 1;
x * x

⇝

(y + 1) * (y + 1)

Simplify
let y = x * 0 + 2

⇝ { ∀x. x ∗ 0 = 0 }
let y = 2

Rust and functional programming 31 / 1

You use equational reasoning whenever you factor out an expression or
function, and when you go the other way by inlining.

Equational reasoning also comes up whenever you simpilify or optimise
code. Optimisations are equations between programs where one side of
the equation has a lower "cost" than the other side.
It’s a really important concept!

Equational reasoning in Rust

Not always possible in Rust.

Example
let mut x: u32 = 2;

let mut f = || -> u32 {
x += 1;
x

};

let y: u32 = f();
y + y

Execution
let y = f();
y + y

⇝

let y = 3;
y + y

⇝

3 + 3

⇝

6

Rust and functional programming 32 / 1

Equational reasoning in Rust

Not always possible in Rust.

Example
let mut x: u32 = 2;

let mut f = || -> u32 {
x += 1;
x

};

let y: u32 = f();
y + y

Execution
let y = f();
y + y

⇝

let y = 3;
y + y

⇝

3 + 3

⇝

6

Rust and functional programming 32 / 1

Equational reasoning in Rust

Not always possible in Rust.

Example
let mut x: u32 = 2;

let mut f = || -> u32 {
x += 1;
x

};

let y: u32 = f();
y + y

Execution
let y = f();
y + y

⇝

let y = 3;
y + y

⇝

3 + 3

⇝

6

Rust and functional programming 32 / 1

Equational reasoning in Rust

Not always possible in Rust.

Example
let mut x: u32 = 2;

let mut f = || -> u32 {
x += 1;
x

};

let y: u32 = f();
y + y

Execution
let y = f();
y + y

⇝

let y = 3;
y + y

⇝

3 + 3

⇝

6

Rust and functional programming 32 / 1

Equational reasoning in Rust

Not always possible in Rust.

Example (inlined)
let mut x: u32 = 2;

let mut f = || -> u32 {
x += 1;
x

};

// let y: u32 = f();
f() + f()

Execution (inlined)
f() + f()

⇝

3 + f()

⇝

3 + 4

⇝

7

Rust and functional programming 33 / 1

Equational reasoning in Rust

Not always possible in Rust.

Example (inlined)
let mut x: u32 = 2;

let mut f = || -> u32 {
x += 1;
x

};

// let y: u32 = f();
f() + f()

Execution (inlined)
f() + f()

⇝

3 + f()

⇝

3 + 4

⇝

7

Rust and functional programming 33 / 1

Equational reasoning in Rust

Not always possible in Rust.

Example (inlined)
let mut x: u32 = 2;

let mut f = || -> u32 {
x += 1;
x

};

// let y: u32 = f();
f() + f()

Execution (inlined)
f() + f()

⇝

3 + f()

⇝

3 + 4

⇝

7

Rust and functional programming 33 / 1

Equational reasoning in Rust

Not always possible in Rust.

Example (inlined)
let mut x: u32 = 2;

let mut f = || -> u32 {
x += 1;
x

};

// let y: u32 = f();
f() + f()

Execution (inlined)
f() + f()

⇝

3 + f()

⇝

3 + 4

⇝

7

Rust and functional programming 33 / 1

Equational reasoning in Rust

Equational reasoning fails when expressions depend on an implicit context.

Example 1 — read
fn f(x: &mut u32) -> u32 { *x + 1 }

let x: &mut u32 = ..;
f(x)

Example 2 — read-write
fn f(x: &mut u32) -> u32 { *x += 1; 0 }

let x: &mut u32 = ..;
f(x)

Rust and functional programming 34 / 1

An expression that depends on an implicit context can evaluate to different
results at different points in the program.

In example 1, the expression f(x), applying the same function to the same
reference, could return different values at different points in the program.
It depends on an implicit mutable store.

An expression that changes an implicit context is not safe to inline, even if
it returns the same result every time — see example 2. Inlining such ex-
pressions can change the meaning of the program, because the program’s
meaning depends on how many times the expression is evaluated.

Equational reasoning in Rust

Widespread equational reasoning is not a design goal for Rust.

Many standard library functions are non-pure / have side-effects, e.g.:

Standard input / output

Environment variables

File system access

Networking

Terminology
An expression whose evaluation does not depend on an implicit
context is described as pure.

A function that doesn’t depend on an implicit context is a pure function.

Changes to an implicit context are called side-effects.

Rust and functional programming 35 / 1

Mutable memory isn’t the only implicit context in Rust programs. There
is also the program input / output, environment variables, file system, net-
working, among others.

In Rust, the level of equational reasoning in a codebase depends on the pro-
grammers’ judgement. When writing new code, the author decides whether
or not equational reasoning is relevant. When refactoring, the programmer
has to understand whether they are working with pure or non-pure func-
tions.

https://doc.rust-lang.org/std/io/index.html
https://doc.rust-lang.org/std/env/index.html
https://doc.rust-lang.org/stable/std/fs/index.html
https://doc.rust-lang.org/std/net/index.html

Equational reasoning and mutability

Mutability doesn’t always break equational reasoning.

A pure function that uses mutability
fn add(x: u32, y: u32) -> u32 {

let mut counter = y;
let mut result = x;

while counter > 0 {
counter -= 1;
result += 1;

}

result
}

Rust and functional programming 36 / 1

I’ve showed a bunch of examples where mutability, in particular mutable
references, breaks equational reasoning. But mutability isn’t intrinsically
opposed to equational reasoning.

Here’s an example of a pure function that uses mutability internally. Equa-
tional reasoning still holds.

Equational reasoning and mutability

Rust’s uniqueness types offer another way to use mutation while preserving
equational reasoning.

Example

fn push<T>(mut xs: Vec<T>, x: T) -> Vec<T> {
xs.push(x);
xs

}

fn length<T>(xs: &Vec<T>) -> usize {
xs.len()

}

let xs = vec![1, 2, 3];
let y = length(&xs);
let new_xs = push(xs, 4);
y + y

Rust and functional programming 37 / 1

Equational reasoning and mutability

Rust’s uniqueness types offer another way to use mutation while preserving
equational reasoning.

Example
fn push<T>(mut xs: Vec<T>, x: T) -> Vec<T> {

xs.push(x);
xs

}

fn length<T>(xs: &Vec<T>) -> usize {
xs.len()

}

let xs = vec![1, 2, 3];
let y = length(&xs);
let new_xs = push(xs, 4);
y + y

Rust and functional programming 37 / 1

Equational reasoning and mutability

Rust’s uniqueness types offer another way to use mutation while preserving
equational reasoning.

Example
fn push<T>(mut xs: Vec<T>, x: T) -> Vec<T> {

xs.push(x);
xs

}

fn length<T>(xs: &Vec<T>) -> usize {
xs.len()

}

let xs = vec![1, 2, 3];
let y = length(&xs);
let new_xs = push(xs, 4);
y + y

Rust and functional programming 37 / 1

Equational reasoning and mutability

Rust’s uniqueness types offer another way to use mutation while preserving
equational reasoning.

Example
fn push<T>(mut xs: Vec<T>, x: T) -> Vec<T> {

xs.push(x);
xs

}

fn length<T>(xs: &Vec<T>) -> usize {
xs.len()

}

let xs = vec![1, 2, 3];
let y = length(&xs);
let new_xs = push(xs, 4);
y + y

Rust and functional programming 37 / 1

Equational reasoning and mutability

Rust’s uniqueness types offer another way to use mutation while preserving
equational reasoning.

Execution
let xs = vec![1, 2, 3];
let y = length(&xs);
let new_xs = push(xs, 4);
y + y

⇝

let xs = /* pointer `p` to [1, 2, 3] */;
let y = length(&xs);
let new_xs = push(xs, 4);
y + y

⇝
...

Rust and functional programming 38 / 1

Equational reasoning and mutability

Rust’s uniqueness types offer another way to use mutation while preserving
equational reasoning.

Execution
let xs = vec![1, 2, 3];
let y = length(&xs);
let new_xs = push(xs, 4);
y + y

⇝

let xs = /* pointer `p` to [1, 2, 3] */;
let y = length(&xs);
let new_xs = push(xs, 4);
y + y

⇝
...

Rust and functional programming 38 / 1

Equational reasoning and mutability

Rust’s uniqueness types offer another way to use mutation while preserving
equational reasoning.

Execution
...
⇝

let y = 3; /* length(&xs) */
let new_xs = push(xs, 4);
y + y

⇝

let new_xs = /* pointer `p` to [1, 2, 3, 4] */;
y + y

⇝

3 + 3

⇝

6

Rust and functional programming 39 / 1

Equational reasoning and mutability

Rust’s uniqueness types offer another way to use mutation while preserving
equational reasoning.

Execution
...
⇝

let y = 3; /* length(&xs) */
let new_xs = push(xs, 4);
y + y

⇝

let new_xs = /* pointer `p` to [1, 2, 3, 4] */;
y + y

⇝

3 + 3

⇝

6

Rust and functional programming 39 / 1

Equational reasoning and mutability

Rust’s uniqueness types offer another way to use mutation while preserving
equational reasoning.

Execution
...
⇝

let y = 3; /* length(&xs) */
let new_xs = push(xs, 4);
y + y

⇝

let new_xs = /* pointer `p` to [1, 2, 3, 4] */;
y + y

⇝

3 + 3

⇝

6

Rust and functional programming 39 / 1

Equational reasoning and mutability

Rust’s uniqueness types offer another way to use mutation while preserving
equational reasoning.

Execution
...
⇝

let y = 3; /* length(&xs) */
let new_xs = push(xs, 4);
y + y

⇝

let new_xs = /* pointer `p` to [1, 2, 3, 4] */;
y + y

⇝

3 + 3

⇝

6
Rust and functional programming 39 / 1

Equational reasoning and mutability

Rust’s uniqueness types offer another way to use mutation while preserving
equational reasoning.

Example
fn push<T>(mut xs: Vec<T>, x: T) -> Vec<T> { .. }

fn length<T>(xs: &Vec<T>) -> usize { .. }

let xs = vec![1, 2, 3]
// let y = length(&xs);
let new_xs = push(xs, 4);

length(&xs) + length(&xs)

Rust and functional programming 40 / 1

Equational reasoning and mutability

Rust’s uniqueness types offer another way to use mutation while preserving
equational reasoning.

Example
fn push<T>(mut xs: Vec<T>, x: T) -> Vec<T> { .. }

fn length<T>(xs: &Vec<T>) -> usize { .. }

let xs = vec![1, 2, 3]
// let y = length(&xs);
let new_xs = push(xs, 4);
// error: borrow of moved value `xs`
length(&xs) + length(&xs)
// ^^^ value borrowed here after move

Rust and functional programming 41 / 1

Equational reasoning and mutability

A unique variable is only in scope while it’s guaranteed to remain
unchanged.

Example
fn push<T>(mut xs: Vec<T>, x: T) -> Vec<T> { .. }

fn length<T>(xs: &Vec<T>) -> usize { .. }

let xs = vec![1, 2, 3]
// `xs` is immutable...
let new_xs = push(xs, 4); // ...until we actually change it
.. // after which we can no longer refer to `xs`

Rust and functional programming 42 / 1

I find this intriguing. push is a non-pure function that doesn’t break equa-
tional reasoning. When you have a static type system, purity is sufficient,
but not necessary for equational reasoning.

Closing remarks

Rust and functional programming 43 / 1

Summary

How Rust relates to:

Algebraic datatypes and higher-order functions

Immutability

Static types

Equational reasoning

Rust and functional programming 44 / 1

Functional programming?

Focused on how we write and reason about programs

▶ Independent of specific program behaviours

There are many dimensions of software quality that functional
programming can’t address

▶ That’s okay and even good!

Rust and functional programming 45 / 1

What is functional programming? I’m still going to refrain from a definition.

But I have a final observation to share. These four points I’ve discussed
include specific tools we use to write programs (language features), styles
of code (preference for immutability or mutability), and ways of reasoning
about code.

I think this isn’t a coincidence: it seems to me that functional programming
is largely concerned with programs themselves, and the process of program-
ming, as objects of study. It is less concerned with the specific behaviours
of any particular program.

Another way to put it is that FP seems to focus on the relationship between
programmers and programs, rather than the relationship between programs
and the world.

I think this is super important and is also inherently risky. It means that the
subject of FP, like other reflective / meta-level subjects, is especially prone
to "navel-gazing".

Functional programming?

Focused on how we write and reason about programs
▶ Independent of specific program behaviours

There are many dimensions of software quality that functional
programming can’t address

▶ That’s okay and even good!

Rust and functional programming 45 / 1

If functional programming is less concerned with specific program be-
haviours, then it’s a necessarily incomplete answer to the question of how
to create good software. I don’t think FP is going to tell me about the ap-
propriate memory / CPU usage bounds for a program and how to achieve
them. Or how to create intuitive user interfaces or render photorealistic 3D
graphics or make sure a drone stays level when it flies.

I think that in the past my definition of "good software" was missing a few
dimensions, which lead to me overestimating the important of "functional
programming" in "good software". Now I know that FP isn’t a panacea and
it doesn’t have to be. Whatever it is, it’s now one of many tools of thought
for pushing my software along a few of many dimensions of "good". And
that’s awesome, because learning’s fun and there’s even more to learn!

Functional programming?

Focused on how we write and reason about programs
▶ Independent of specific program behaviours

There are many dimensions of software quality that functional
programming can’t address

▶ That’s okay and even good!

Rust and functional programming 45 / 1

Functional programming?

Focused on how we write and reason about programs
▶ Independent of specific program behaviours

There are many dimensions of software quality that functional
programming can’t address

▶ That’s okay and even good!

Rust and functional programming 45 / 1

