
A “third way” of compiling polymorphism

Isaac Elliott

13 May, 2025

A “third way” of compiling polymorphism 1 / 10



Compiling a function

A simple function
int64_t add(int64_t x, int64_t y) {

return x + y;
}

A simple function call
int64_t z = add(42, 99);

Plausible machine code for add
add:
mov rax, [rsp + 8]
mov rbx, [rsp + 16]
add rax, rbx
mov [rsp + 24], rax
ret

Plausible machine code for
calling add
push QWORD 42
push QWORD 99
call add
mov [rbp], rax
add rsp, 16

A “third way” of compiling polymorphism 2 / 10

Let’s start with some code generation fundamentals.

Here’s a simple function that does addition.



Compiling a function

A simple function
int64_t add(int64_t x, int64_t y) {

return x + y;
}

A simple function call
int64_t z = add(42, 99);

Plausible machine code for add
add:
mov rax, [rsp + 8]
mov rbx, [rsp + 16]
add rax, rbx
mov [rsp + 24], rax
ret

Plausible machine code for
calling add
push QWORD 42
push QWORD 99
call add
mov [rbp], rax
add rsp, 16

A “third way” of compiling polymorphism 2 / 10

Let’s start with some code generation fundamentals.

Here’s a simple function that does addition.

Here’s some plausible machine code for the function. Let’s step through it
so you can get a feel for what it does.



Compiling a function

A simple function
int64_t add(int64_t x, int64_t y) {

return x + y;
}

A simple function call
int64_t z = add(42, 99);

Program state (calling add)

Instruction
→ push QWORD 42

push QWORD 99
call add
add rsp, 16

Address Data
0x0 free
... free
rbp - 8 (= rsp) space for z
rbp ?

A “third way” of compiling polymorphism 3 / 10

On the left we have the program counter. The arrow points to the instruc-
tion that will be executed next.

On the right is the stack, which is a primitive data struture provided
to the program by the operating system. It’s just a slab of memory, plus a
register rsp that holds the address of the top of the stack.

By convention, more recent stack entries are stored at lower addresses.
The maximum possible stack location isn’t usually 0x0; there are usually
other parts of the program that live at those low address. But I thought
that putting 0x0 as the “ceiling” of the stack was very illustrative.

The rbp register holds the “frame pointer”. Every function call gets
to own part of the stack, and promises not to mess with the portion of the
stack owned by its caller. The frame pointer tells us where our caller’s stack
ends and ours begins. Local variables are addressed relative to the frame
pointer.

So you can see that before we call add we’ve allocated memory for
its return value.



Compiling a function

A simple function
int64_t add(int64_t x, int64_t y) {

return x + y;
}

A simple function call
int64_t z = add(42, 99);

Program state (calling add)

Instruction
push QWORD 42

→ push QWORD 99
call add
add rsp, 16

Address Data
0x0 free
... free
rbp - 16 (= rsp) 42
rbp - 8 space for z
rbp ?

A “third way” of compiling polymorphism 3 / 10

We just pushed the 8 byte value 42 onto the stack.



Compiling a function

A simple function
int64_t add(int64_t x, int64_t y) {

return x + y;
}

A simple function call
int64_t z = add(42, 99);

Program state (calling add)

Instruction
push QWORD 42
push QWORD 99

→ call add
add rsp, 16

Address Data
0x0 free
... free
rbp - 24 (= rsp) 99
rbp - 16 42
rbp - 8 space for z
rbp ?

A “third way” of compiling polymorphism 3 / 10

We just pushed the 8 byte value 99 onto the stack.



Compiling a function

A simple function
int64_t add(int64_t x, int64_t y) {

return x + y;
}

A simple function call
int64_t z = add(42, 99);

Program state (running add)

Instruction
→ mov rax, [rsp + 8]

mov rbx, [rsp + 16]
add rax, rbx
mov [rsp + 24], rax
ret

Address Data
0x0 free
... free
rbp - 32 (= rsp) return addr
rbp - 24 99
rbp - 16 42
rbp - 8 space for z
rbp ?

A “third way” of compiling polymorphism 3 / 10

We’ve called add, which pushes the return address onto the stack and then
jumps to the function’s address.



Compiling a function

A simple function
int64_t add(int64_t x, int64_t y) {

return x + y;
}

A simple function call
int64_t z = add(42, 99);

Program state (running add)

Instruction
mov rax, [rsp + 8]

→ mov rbx, [rsp + 16]
add rax, rbx
mov [rsp + 24], rax
ret

Address Data
0x0 free
... free
rbp - 32 (= rsp) return addr
rbp - 24 99
rbp - 16 42
rbp - 8 space for z
rbp ?

A “third way” of compiling polymorphism 3 / 10

99 was loaded into rax



Compiling a function

A simple function
int64_t add(int64_t x, int64_t y) {

return x + y;
}

A simple function call
int64_t z = add(42, 99);

Program state (running add)

Instruction
mov rax, [rsp + 8]
mov rbx, [rsp + 16]

→ add rax, rbx
mov [rsp + 24], rax
ret

Address Data
0x0 free
... free
rbp - 32 (= rsp) return addr
rbp - 24 99
rbp - 16 42
rbp - 8 space for z
rbp ?

A “third way” of compiling polymorphism 3 / 10

42 was loaded into rbx



Compiling a function

A simple function
int64_t add(int64_t x, int64_t y) {

return x + y;
}

A simple function call
int64_t z = add(42, 99);

Program state (running add)

Instruction
mov rax, [rsp + 8]
mov rbx, [rsp + 16]
add rax, rbx

→ mov [rsp + 24], rax
ret

Address Data
0x0 free
... free
rbp - 32 (= rsp) return addr
rbp - 24 99
rbp - 16 42
rbp - 8 space for z
rbp ?

A “third way” of compiling polymorphism 3 / 10

rax was set to 99 + 42 = 141



Compiling a function

A simple function
int64_t add(int64_t x, int64_t y) {

return x + y;
}

A simple function call
int64_t z = add(42, 99);

Program state (running add)

Instruction
mov rax, [rsp + 8]
mov rbx, [rsp + 16]
add rax, rbx
mov [rsp + 24], rax

→ ret

Address Data
0x0 free
... free
rbp - 32 (= rsp) return addr
rbp - 24 99
rbp - 16 42
rbp - 8 141
rbp ?

A “third way” of compiling polymorphism 3 / 10

The space for z was filled with that value



Compiling a function

A simple function
int64_t add(int64_t x, int64_t y) {

return x + y;
}

A simple function call
int64_t z = add(42, 99);

Program state (returned from add)

Instruction
push QWORD 42
push QWORD 99
call add

→ add rsp, 16

Address Data
0x0 free
... free
rbp - 24 (= rsp) 99
rbp - 16 42
rbp - 8 141
rbp ?

A “third way” of compiling polymorphism 3 / 10

We returned from add, which popped the return address from the top of the
stack and then jumped to it.



Compiling a function

A simple function
int64_t add(int64_t x, int64_t y) {

return x + y;
}

A simple function call
int64_t z = add(42, 99);

Program state (returned from add)

Instruction
push QWORD 42
push QWORD 99
call add
add rsp, 16

→

Address Data
0x0 free
... free
rbp - 8 (= rsp) 141
rbp ?

A “third way” of compiling polymorphism 3 / 10

Two 8-byte values were “popped” from the stack. They’re technically still
there (because we didn’t overwrite them) but for all intents and purposes
they’re garbage.



Compiling a function

A simple function
int64_t add(int64_t x, int64_t y) {

return x + y;
}

A simple function call
int64_t z = add(42, 99);

Plausible machine code for add
add:
mov rax, [rsp + 8]
mov rbx, [rsp + 16]
add rax, rbx
mov [rsp + 24], rax
ret

Plausible machine code for
calling add
push QWORD 42
push QWORD 99
call add
mov [rbp], rax
add rsp, 16

A “third way” of compiling polymorphism 4 / 10

Production compilers avoid passing data via memory where possible,
preferring registers, because accessing memory can be hundreds of times
slower.

My example uses memory instead of registers to make size require-
ments very explicit. At some point, every type must have a known size
because it’s possible that a value of that type will end up in memory. In this
example values are exclusively placed on the stack, but programs may also
store values in the heap (another canonical memory region that I won’t
explain here).

There is no way to get around size requirements, even when a com-
piler uses registers effectively. Registers have fixed sizes, so the compiler
needs to know the size of a value to determine which, if any, register can
hold the value.



Compiling a polymorphic function

A simple polymorphic function
(C++)
template <class T>
T id(T x) { return x; }

What is the size of T?

A simple polymorphic function
(Haskell)
id :: a -> a
id x = x

What is the size of a?

A “third way” of compiling polymorphism 5 / 10

Polymorphic functions (also known as generics) are defined over all types.

In the examples to the left, the names T and a are known as type
variables. Since a type variable stands for any possible type, it has no
definitive size.

I just said that every type must have a known size. So how to you
compile a function that involves types with unknown sizes? This sounds
like a contradiction.

I’ve chosen C++ and Haskell for my code examples because these
languages have very different solutions to this problem. Let’s look at C++
first because C++ comes before Haskell in the dictionary.



Compiling a polymorphic function (monomorphisation)

A simple polymorphic function
(C++)
template <class T>
T id(T x) { return x; }

bool x = id(true);
/*
bool id(bool x) {

return x;
}
*/

int32_t x = id(20);
/*
int32_t id(int32_t x) {

return x;
}
*/

string x = id("hello");
/*
string id(string x) {

return x;
}
*/

A “third way” of compiling polymorphism 6 / 10

C++ compiles polymorphic functions by not actually compiling polymorphic
functions.

The definition of a polymorphic function doesn’t result in any code
generation. Instead, specialised copies of the polymorphic function are
generated whenever it’s called with a concrete type. This process is called
monomorphisation.



Compiling a polymorphic function (monomorphisation)

A simple polymorphic function
(C++)
template <class T>
T id(T x) { return x; }

bool x = id(true);
/*
bool id(bool x) {

return x;
}
*/

int32_t x = id(20);
/*
int32_t id(int32_t x) {

return x;
}
*/

string x = id("hello");
/*
string id(string x) {

return x;
}
*/

A “third way” of compiling polymorphism 6 / 10

C++ compiles polymorphic functions by not actually compiling polymorphic
functions.

The definition of a polymorphic function doesn’t result in any code
generation. Instead, specialised copies of the polymorphic function are
generated whenever it’s called with a concrete type. This process is called
monomorphisation.



Compiling a polymorphic function (monomorphisation)

A simple polymorphic function
(C++)
template <class T>
T id(T x) { return x; }

bool x = id(true);
/*
bool id(bool x) {

return x;
}
*/

int32_t x = id(20);
/*
int32_t id(int32_t x) {

return x;
}
*/

string x = id("hello");
/*
string id(string x) {

return x;
}
*/

A “third way” of compiling polymorphism 6 / 10

C++ compiles polymorphic functions by not actually compiling polymorphic
functions.

The definition of a polymorphic function doesn’t result in any code
generation. Instead, specialised copies of the polymorphic function are
generated whenever it’s called with a concrete type. This process is called
monomorphisation.



Compiling a polymorphic function (monomorphisation)

A simple polymorphic function
(C++)
template <class T>
T id(T x) { return x; }

bool x = id(true);
/*
bool id(bool x) {

return x;
}
*/

int32_t x = id(20);
/*
int32_t id(int32_t x) {

return x;
}
*/

string x = id("hello");
/*
string id(string x) {

return x;
}
*/

A “third way” of compiling polymorphism 6 / 10

C++ compiles polymorphic functions by not actually compiling polymorphic
functions.

The definition of a polymorphic function doesn’t result in any code
generation. Instead, specialised copies of the polymorphic function are
generated whenever it’s called with a concrete type. This process is called
monomorphisation.



Pros and cons of monomorphisation

Pros Cons

Generates efficient code Generates a lot of code
No separate compilation
Complicates advanced type systems

A “third way” of compiling polymorphism 7 / 10



Pros and cons of monomorphisation

Pros Cons
Generates efficient code

Generates a lot of code
No separate compilation
Complicates advanced type systems

A “third way” of compiling polymorphism 7 / 10

The main advantage of this approach is that it generates the same code that
you’d write if you used C and copy-pasted a lot of code. Each monomorphic
version of the polymorphic function performs as well as if you’d written is
by hand. This is what’s known as a “zero-cost abstraction”.

Of course, monomorphisation does have costs, just not at the level of
individual monomorphic functions.



Pros and cons of monomorphisation

Pros Cons
Generates efficient code Generates a lot of code

No separate compilation
Complicates advanced type systems

A “third way” of compiling polymorphism 7 / 10

If you use a function like id with 5 different concrete types, then your final
program contains 5 slightly different versions of the same function. Intro-
ducting type variables to a function multiplies this effect. Large programs
that use polymorphism liberally tend to exhibit code bloat when compiled
using monomorphisation.



Pros and cons of monomorphisation

Pros Cons
Generates efficient code Generates a lot of code

No separate compilation

Complicates advanced type systems

A “third way” of compiling polymorphism 7 / 10

A related issue is that modules containing polymorphic functions can’t be
separately compiled. Separate compilation reduces code bloat by placing a
function’s code in a single object file that can be referenced by other parts of
the program. Separate compilation also speeds up the compilation process
because code for a function definition is not repeatedly generated.



Pros and cons of monomorphisation

Pros Cons
Generates efficient code Generates a lot of code

No separate compilation
Complicates advanced type systems

A “third way” of compiling polymorphism 7 / 10

The final drawback I want to mention is how monomorphisation interacts
with advanced type system features like higher-kinded types, existential
types, generalised algebraic datatypes (GADTs), and dependent types. My
impression as a compiler implementor is that it makes implementing some
of these features more difficult, and for other features it’s just the wrong
approach.



Pros and cons of monomorphisation

Pros Cons
Generates efficient code Generates a lot of code

No separate compilation
Complicates advanced type systems

A “third way” of compiling polymorphism 7 / 10

While I’ve listed few pros relative to the number of cons, I often find that
runtime efficiency is worth the trade.



Compiling a polymorphic function (uniform
representation)

A simple polymorphic
function (Haskell)
id :: a -> a
id x = x

C equivalent
void* id(void* x) {

return x;
}

A “third way” of compiling polymorphism 8 / 10

In Haskell, polymorphic functions actually are compiled. The requirement
that “every type is has a known size” (including type variables) is satisfied
by making every type (including type variables) have the same size. Haskell
values are boxed by default, which means they’re represented by pointers
to heap-allocated memory.

This approach is called uniform representation.



Pros and cons of uniform representation

Pros Cons

Generates compact code Generates allocation-heavy (slow) code
Allows separate compilation
Simplifies advanced type systems

Reduced data locality

Increased computational overhead

A “third way” of compiling polymorphism 9 / 10



Pros and cons of uniform representation

Pros Cons
Generates compact code

Generates allocation-heavy (slow) code
Allows separate compilation
Simplifies advanced type systems

Reduced data locality

Increased computational overhead

A “third way” of compiling polymorphism 9 / 10

Polymorphic functions are compiled once, reducing code size.



Pros and cons of uniform representation

Pros Cons
Generates compact code

Generates allocation-heavy (slow) code

Allows separate compilation

Simplifies advanced type systems

Reduced data locality

Increased computational overhead

A “third way” of compiling polymorphism 9 / 10

This allows modules to be compiled once and reused throughout the pro-
gram.



Pros and cons of uniform representation

Pros Cons
Generates compact code

Generates allocation-heavy (slow) code

Allows separate compilation
Simplifies advanced type systems

Reduced data locality

Increased computational overhead

A “third way” of compiling polymorphism 9 / 10

Code generation for advanced type system features is no more difficult than
the fundamental features. Functions take and return pointers, from humble
booleans to complex dependent types.



Pros and cons of uniform representation

Pros Cons
Generates compact code Generates allocation-heavy (slow) code
Allows separate compilation
Simplifies advanced type systems

Reduced data locality

Increased computational overhead

A “third way” of compiling polymorphism 9 / 10

The biggest drawback of the uniform representation approach is its reliance
on memory. As I said earlier, accessing memory can be hundreds of times
slower than accessing registers. Overuse of memory and underuse of regis-
ters is a potentially massive handicap.



Pros and cons of uniform representation

Pros Cons
Generates compact code Generates allocation-heavy (slow) code
Allows separate compilation
Simplifies advanced type systems

Why are (heap) allocations slow?

Reduced data locality

Increased computational overhead

A “third way” of compiling polymorphism 9 / 10



Pros and cons of uniform representation

Pros Cons
Generates compact code Generates allocation-heavy (slow) code
Allows separate compilation
Simplifies advanced type systems

Why are (heap) allocations slow?

Reduced data locality

Increased computational overhead

A “third way” of compiling polymorphism 9 / 10

Modern CPUs have layers of caches to reduce the performance gap between
registers and memory. A cache hit is slower than reading from a register but
still much faster than accessing memory. Instead of being read byte-at-a-
time, larger chunks of memory (64B at the time of writing) are loaded and
cached, under the assumption that nearby bytes will soon be needed. When
a program is structured such that reading one byte increases the probability
of soon reading an adjacent byte, the program is said to have high data lo-
cality. Programs that use a lot of heap allocation tend to have unpredictable
data locality.



Pros and cons of uniform representation

Pros Cons
Generates compact code Generates allocation-heavy (slow) code
Allows separate compilation
Simplifies advanced type systems

Why are (heap) allocations slow?

Reduced data locality

Increased computational overhead

A “third way” of compiling polymorphism 9 / 10

Another problem is that heap allocation has a computational cost. The
structure of the heap depends on the memory allocation system used by
the program. The allocator has to track which heap regions are free or in
use, so that it can reserve an appropriate region when a new allocation is
requested. This bookkeeping work adds up.



Pros and cons of uniform representation

Pros Cons
Generates compact code Generates allocation-heavy (slow) code
Allows separate compilation
Simplifies advanced type systems

Why are (heap) allocations slow?

Reduced data locality

Increased computational overhead

A “third way” of compiling polymorphism 9 / 10

Languages that use uniform representation typically rely on clever and
complex allocation systems (often called “garbage collectors”) to reduce
these costs. Garbage collectors can amortise the cost of many allocations
over longer programs and improve data locality for common allocation
patterns.

But because these allocation systems are general purpose, they’re far
from optimal for any specific function or program. In this respect, poly-
morphism via uniform representation is not a “zero-cost abstraction”.



A “third way” for compiling a polymorphic function

Goals:

Stack allocation by default

Allow separate compilation

Enable advanced type system features (higher-kinded types, GADTs,
dependent types)

A “third way” of compiling polymorphism 10 / 10

Some of the tradeoffs described feel weird. For example: why should the
use of polymorphic functions force me to choose between stack-allocation
by default and separate compilation? For a while I’ve wondered if there are
any other reasonable approaches to compiling polymorphism, and now I’ve
got one that’s interesting.



Compiling a polymorphic function (type passing)

A simple polymorphic function
(Haskell-like language)
id :: forall a. a -> a
id x = x

A simple polymorphic function
call (Haskell-like language)
let x = id @Int64 42

C equivalent (definition)
void id(void* result, const Type* a, const void* x) {

// result <- x
a->move(result, x);

}

C equivalent (call)
int64_t arg = 42;
int64_t x;
id(&x, &Type_Int64, &arg);

A “third way” of compiling polymorphism 11 / 10

Here’s an example of the approach. Polymorphic values are passed and
returned via pointers, usually to stack memory. For each type variable,
a corresponding type dictionary is passed to the function. Each type
dictionary contains functions that manipulation pointers to values of a
specific type.

For example, the Type_Int64 dictionary has functions that manipu-
late pointers to 64-bit integers.



Compiling a polymorphic function (type passing)

A simple polymorphic function
(Haskell-like language)
id :: forall a. a -> a
id x = x

A simple polymorphic function
call (Haskell-like language)
let x = id @Int64 42

Prelude for C equivalent
typedef struct {

void (*move)(const void*, const void*);
/* other functions omitted */

} Type;

const Type Type_Int64 = /* omitted */;

A “third way” of compiling polymorphism 11 / 10

Here’s the definition of Type. move is the only function required to work
with value types like integers. If you have compound types and reference
counting allocation you can add a copy and drop function.



Compiling a polymorphic function (type passing)

A simple polymorphic function
(Haskell-like language)
id :: forall a. a -> a
id x = x

A simple polymorphic function
call (Haskell-like language)
let x = id @Int64 42

C equivalent (definition)
void id(void* result, const Type* a, const void* x) {

// result <- x
a->move(result, x);

}

C equivalent (call)
int64_t arg = 42;
int64_t x;
id(&x, &Type_Int64, &arg);

A “third way” of compiling polymorphism 11 / 10

I find this approach interesting because it overlaps with both monomor-
phisation and uniform representation but can’t be reduced to either.

It’s similar to monomorphisation, in that monomorphic function ar-
guments can be passed in registers or on the stack. And it’s similar to
uniform representation in that polymorphic arguments are represented by
pointers.

But unlike monomorphisation, it permits separate compilation, and
unlike uniform representation, it doesn’t require all values to be heap-
allocated pointers.



Compiling a polymorphic function (type passing)

A simple polymorphic function (Haskell-like language)
id :: forall a. a -> a
id x = x

A simple polymorphic function call (Haskell-like language)
let x = {-# SPECIALISE #-} id @Int64 42

C equivalent (definition)
int64_t id_Int64(int64_t x) {

return x;
}

C equivalent (call)
int64_t x = id_Int64(42);

A “third way” of compiling polymorphism 12 / 10

I also like this approach because it sets the stage for programmer-driven
monomorphisation.

If a polymorphic function is called repeatedly with a known type
(e.g. in a loop), then the programmer can choose to use a specialised
version to avoid the overhead of passing arguments via the stack.



Pros and cons of type passing
Pros Cons

Generates fast monomorphic code Polymorphism has runtime overhead
Reasonably compact code
Allows separate compilation
Supports advanced type system features

A “third way” of compiling polymorphism 13 / 10



Pros and cons of type passing
Pros Cons
Generates fast monomorphic code

Polymorphism has runtime overhead
Reasonably compact code
Allows separate compilation
Supports advanced type system features

A “third way” of compiling polymorphism 13 / 10

The presence of polymorphism in the language doesn’t impact monomor-
phic code. Uniform representation mandates boxing by default in order to
compile polymorphic code, and if you don’t use polymorphism you still have
to pay the cost.*
* Unless you have a very advanced compiler like GHC.



Pros and cons of type passing
Pros Cons
Generates fast monomorphic code

Polymorphism has runtime overhead

Reasonably compact code

Allows separate compilation
Supports advanced type system features

A “third way” of compiling polymorphism 13 / 10

Use of polymorphic functions with many different types doesn’t cause an
explosion in code size. However, the type dictionaries and extra function
arguments take up space.



Pros and cons of type passing
Pros Cons
Generates fast monomorphic code

Polymorphism has runtime overhead

Reasonably compact code
Allows separate compilation

Supports advanced type system features

A “third way” of compiling polymorphism 13 / 10

Separate compilation works.



Pros and cons of type passing
Pros Cons
Generates fast monomorphic code

Polymorphism has runtime overhead

Reasonably compact code
Allows separate compilation
Supports advanced type system features

A “third way” of compiling polymorphism 13 / 10

The approach naturally generalises to higher-kinded types, existentials,
GADTs, and maybe even dependent types. I’m running out of steam so I’m
not going to justify that claim as part of this presentation.

If people are interested we can sketch some of it if there’s extra time
left, or afterward at the pub.



Pros and cons of type passing
Pros Cons
Generates fast monomorphic code Polymorphism has runtime overhead
Reasonably compact code
Allows separate compilation
Supports advanced type system features

A “third way” of compiling polymorphism 13 / 10

The main (theoretical) drawback is the runtime overhead of type dictionar-
ies.

• These type dictionaries are extra function arguments

• Calling a type dictionary requires a pointer dereference and indirect
jump

• More interesting cases require runtime construction of type
dictionaries

I’m unsure of the magnitude of these performance impacts in real-world
code. It may be that it’s just too slow in general, but it’s also possible that
slow cases are rare and easily fixed by programmer-driven specialisation.

I’m building a compiler using these techniques with the intention of
benchmarking the type passing approach. It’s slow going because I have
lots of other things to do, so if you’re excited by these ideas then feel free
to race ahead build the thing yourself so I can benchmark it.



Related work

How to make ad-hoc polymorphism less ad hoc (1989) -
https://doi.org/10.1145/75277.75283

An ad hoc approach to the implementation of polymorphism (1991) -
https://doi.org/10.1145/117009.117017

Dictionary passing for polytypic polymorphism (2001) -
https://www.cs.princeton.edu/techreports/2001/635.pdf

A type-passing approach for the implementation of parametric
methods in Java (2003) -
https://doi.org/10.1093/comjnl/46.3.263

Implementing Swift Generics (2017) -
https://www.youtube.com/watch?v=ctS8FzqcRug

A “third way” of compiling polymorphism 14 / 10

• The seminal paper on type classes and the dictionary passing
approach. This drives the intuition behind type passing.

• Notes the same problems with monomorphisation and uniform
representation (but uses different names), and comes up with
different middle-ground technique, due to their use of pointer
tagging.

• The earliest example of type passing I could find. Doesn’t consider
parametric polymorphism; it uses type passing to allow runtime
pattern matching on types.

• What it says on the tin. I’m not inspired by it; it’s just very relevant.

• The most recent incarnation of this approach. I haven’t dug into the
Swift compiler so I don’t know if this has changed in the meantime.

https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/117009.117017
https://www.cs.princeton.edu/techreports/2001/635.pdf
https://doi.org/10.1093/comjnl/46.3.263
https://www.youtube.com/watch?v=ctS8FzqcRug


Bonus slides - existential types

A simple existential type (Haskell-like language)
exists a. a

C equivalent
typedef struct {

const Type* type;
const void* value;

} Exists_example;

A “third way” of compiling polymorphism 15 / 10

Logicians call parametric polymorphism “universal quantification”, and
existential quantification is its dual. In previous slides the forall keyword
gave rise to extra function arguments for type dictionaries. On the other
hand, exists corresponds to pairs/products/structures that have a field
for each type variable.

exists a. a is not very useful; all you can do with it is pass it
around. It’s a useful minimal example nonetheless.

exists a. a is a type dictionary paired with a pointer to a value
that the type dictionary can manipulate.

Notice that it contains a freestanding pointer. I claim that to compile
unrestricted existential quantification you need a memory management
system. I’ve started my experiments with automatic reference counting.



Bonus slides - higher-kinded types

A simple function with higher-kinded polymorphism (Haskell-like
language)
id' :: forall (f :: Type -> Type) (a :: Type). f a -> f a
id' x = x

C equivalent
void id_prime(

void* result,
const TypeToType* f,
const Type* a,
const void* x

) {
const Type* f_a = f->apply(a);
f_a->move(result, x);

}

A “third way” of compiling polymorphism 16 / 10

Here’s a silly identity function that only works on ‘container-shaped’ types.
When compiled, it gets an extra argument for each of the two type variables.

f is not a type dictionary, though - it’s a type dictionary construc-
tor.

Notice that the constructed dictionary f_a is behind a pointer. I
think that higher-kinded types in the type passing approach also requires
automatic memory management. For example, if f a was packed into the
type component of exists a. a from earlier.

This kind (ha ha) of complication is why I’d like to benchmark real-
world code compiled with this approach. Part of the reason I’m thinking
about any of this is to reduce allocations, and it would potentially be a
shame to just have moved them around. If higher-kinded types in this style
were too slow or used too much memory to be practical, it would be better
to not support them in the first place! I’m moderately optimistic, though.


